

## WARNING:

Do not allow familiarity with tools to make you careless. Remember that a careless fraction of a second is sufficient to inflict serious injury.



# WARNING:

Always wear eye protection with side shields marked to comply with ANSI Z87.1. Failure to do so could result in objects being thrown into your eyes, resulting in possible serious injury.



### WARNING:

Do not use any attachments or accessories not recommended by the manufacturer of this tool. The use of attachments or accessories not recommended can result in serious personal injury.

#### **APPLICATIONS**

This product has been designed only for the purposes listed below:

- Cross cutting wood and plastic (do not cut metals, ceramics or masonry products.)
- Cross cutting miters, joints, etc., for picture frames, moldings, door casings, and fine joinery
- Bevel and compound cutting
- Cross cutting wide workpieces

**NOTE:** The blade provided is fine for most wood cutting operations, but for fine joinery cuts or cutting plastic, use one of the accessory blades available from the Ryobi dealer.



### WARNING:

Before starting any cutting operation, clamp or bolt the compound miter saw to a workbench. Never operate the miter saw on the floor or in a crouched position. Failure to heed this warning can result in serious personal injury.



## WARNING:

To avoid serious personal injury, always tighten the miter lock handle and bevel lock handle securely before making a cut. Failure to do so could result in movement of the miter table or saw head while making a cut.



### WARNING:

To avoid serious personal injury, keep hands outside the no hands zone, at least 3 in. from the blade. Never perform any cutting operation freehand (without holding workpiece against the fence). The blade could grab the workpiece if it slips or twists.

### **NOTICE:**

Do not start the compound miter saw without checking for interference between the blade and the miter fence. Damage could result to the blade if it strikes the miter fence during operation of the saw.

### **CUTTING WITH YOUR COMPOUND MITER SAW**



## WARNING:

When using a work clamp or C-clamp to secure your workpiece, clamp workpiece on one side of the blade only. The workpiece must remain free on one side of the blade to prevent the blade from binding in workpiece. The workpiece binding the blade will cause motor stalling and kickback. This situation could cause an accident resulting in possible serious personal injury.



# WARNING:

NEVER move the workpiece or make adjustment to any cutting angle while the saw is running and the blade is rotating. Any slip can result in contact with the blade causing serious personal injury.



### **WARNING:**

Do not try to cut narrow pieces using the sliding feature. Failure to heed this warning could result in serious personal injury.

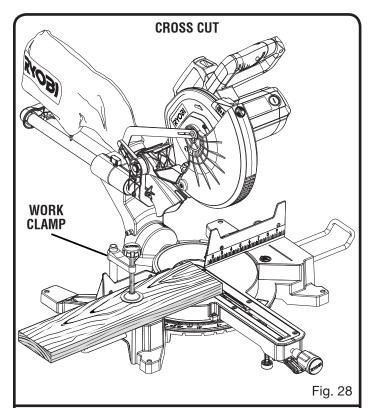
#### TO MAKE NON-SLIDING CUTS

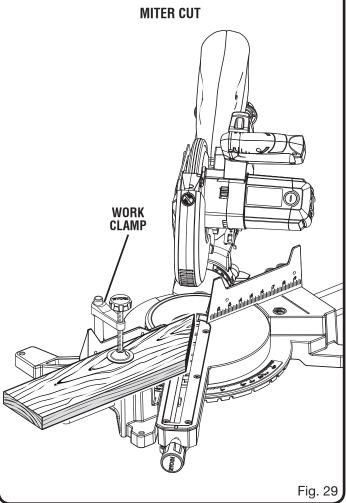


## WARNING:

Securely tighten the slide lock knob when making any non-sliding cuts. Failure to tighten the knob could result in the saw head moving during the cutting operation.

### TO MITER CUT / CROSS CUT


See Figures 28 - 29.


A cross cut is made by cutting across the grain of the workpiece. A straight cross cut is made with the miter table set at the 0° position. Miter cross cuts are made with the miter table set at some angle other than 0°.

- Slide the saw head to its most rearward position and tighten the slide lock knob securely.
- Raise saw arm to its full height.
- Loosen the miter lock handle approximately one-half turn and squeeze the detent release lever.
- Rotate the control arm until the pointer aligns with the desired angle on the miter scale.
- Release the detent release lever, then tighten the miter lock knob to secure the miter table.

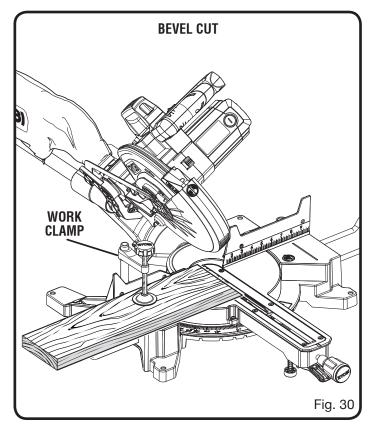
**NOTE:** You can quickly locate 0°, 15°, 22-1/2°, 31.6°, and 45° left or right by releasing the detent release lever as you rotate the control arm. The control arm will seat itself in one of the positive stop notches, located in the miter table base.

- Place the workpiece flat on the miter table with one edge securely against the fence. If the board is warped, place the convex side against the fence. If the concave edge of a board is placed against the fence, the board could collapse on the blade at the end of the cut, jamming the blade. See Figures 40 41.
- When cutting long pieces of lumber or molding, support the opposite end of the stock with a roller stand or with a work surface level with the saw table. See Figure 33.
- Align cutting line on the workpiece with the edge of saw blade or laser line.
- Grasp the stock firmly with one hand and secure it against the fence. Use the work clamp, C-clamp, or other suitable clamp to secure the workpiece when possible.
- Before turning on the saw, perform a dry run of the cutting operation to make sure that no problems will occur when the cut is made.





- Grasp the saw handle firmly. Squeeze the switch trigger. Allow several seconds for the blade to reach maximum speed.
- Slowly lower the blade into and through the workpiece.
- Release the switch trigger and allow the saw blade to stop rotating before raising the blade out of workpiece and removing the workpiece from the miter table.


#### TO BEVEL CUT

See Figure 30.

A bevel cut is made by cutting across the grain of the workpiece with the blade angled to the workpiece. A straight bevel cut is made with the miter table set at the zero degree position and the blade set at an angle between 0° and 45°.

- Slide the saw head to its most rearward position and tighten the slide lock knob securely.
- Pull out the lock pin and lift saw arm to its full height.
- Loosen the miter lock handle approximately one-half turn and squeeze the detent release lever.
- Rotate the control arm until the scale indicator is positioned at 0°.
- Release the detent release lever, engaging the positive stop notch, then tighten the miter lock knob to secure the miter table.
- Loosen the bevel lock knob and move the saw arm to the desired bevel angle.
- Bevel angles can be set from 0° to 45°.
- Align the indicator point for the desired angle.
- Once the saw arm has been set at the desired angle, securely tighten the bevel lock knob.
- Place the workpiece flat on the miter table with one edge securely against the fence. If the board is warped, place the convex side against the fence. If the concave edge of a board is placed against the fence, the board could collapse on the blade at the end of the cut, jamming the blade. See Figures 40 41.
- When cutting long pieces of lumber or molding, support the opposite end of the stock with a roller stand or with a work surface level with the saw table. See Figure 33.

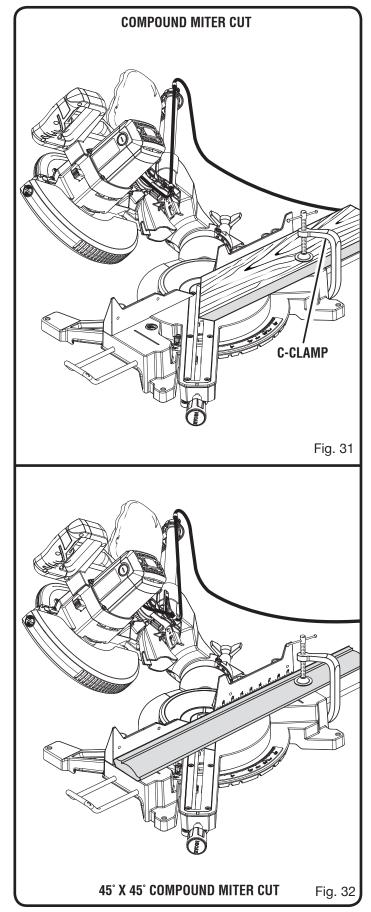
- Align the cutting line on the workpiece with the edge of saw blade or laser line.
- Grasp the stock firmly with one hand and secure it against the fence. Use the work clamp, C-clamp, or other suitable clamp to secure the workpiece when possible.
- Before turning on the saw, perform a dry run of the cutting operation just to make sure that no problems will occur when the cut is made.
- Grasp the saw handle firmly then squeeze the switch trigger. Allow several seconds for the blade to reach maximum speed.
- Slowly lower the blade into and through the workpiece.
- Release the switch trigger and allow the saw blade to stop rotating before raising the blade out of workpiece. Wait until the electric brake stops blade from turning before removing the workpiece from miter table.



#### TO COMPOUND MITER CUT

See Figures 31 - 32.

A compound miter cut is a cut made using a miter angle and a bevel angle at the same time. This type of cut is used to make picture frames, cut molding, make boxes with sloping sides, and for certain roof framing cuts.


To make this type of cut the control arm on the miter table must be rotated to the correct angle and the saw arm must be tilted to the correct bevel angle. Care should always be taken when making compound miter setups due to the interaction of the two angle settings.

Adjustments of miter and bevel settings are interdependent with one another. Each time you adjust the miter setting you change the effect of the bevel setting. Also, each time you adjust the bevel setting you change the effect of the miter setting.

It may take several settings to obtain the desired cut. The first angle setting should be checked after setting the second angle, since adjusting the second angle affects the first.

Once the two correct settings for a particular cut have been obtained, always make a test cut in scrap material before making a finish cut in good material.

- Slide the saw head to its most rearward position and tighten the slide lock knob securely.
- Pull out the lock pin and lift saw arm to its full height.
- Loosen the miter lock handle approximately one-half turn and squeeze the detent release lever.
- Rotate the control arm until the pointer aligns with the desired angle on the miter scale.
- Release the detent release lever, then tighten the miter lock knob to secure the miter table.
- Loosen the bevel lock knob and move the saw arm to the left to the desired bevel angle.
- Bevel angles can be set from 0° to 45°.
- Once the saw arm has been set at the desired angle, securely tighten the bevel lock knob.
- Recheck miter angle setting. Make a test cut in scrap material.
- Place the workpiece flat on the miter table with one edge securely against the fence. If the board is warped, place the convex side against the fence. If the concave edge of a board could collapse on the blade at the end of the cut, jamming the blade. See Figures 40 41.
- When cutting long pieces of lumber or molding, support the opposite end of the stock with a roller stand or with a work surface level with the saw table. See Figure 33.
- Align the cutting line on the workpiece with the edge of saw blade or laser line.



- Grasp the stock firmly with one hand and secure it against the fence. Use the work clamp, C-clamp, or other suitable clamp to secure the workpiece when possible.
- Before turning on the saw, perform a dry run of the cutting operation just to make sure that no problems will occur when the cut is made.
- Grasp the saw handle firmly then squeeze the switch trigger. Allow several seconds for the blade to reach maximum speed.
- Slowly lower the blade into and through the workpiece.
- Release the switch trigger and allow the saw blade to stop rotating before raising the blade out of workpiece. Wait until the electric brake stops blade from turning before removing the workpiece from miter table.

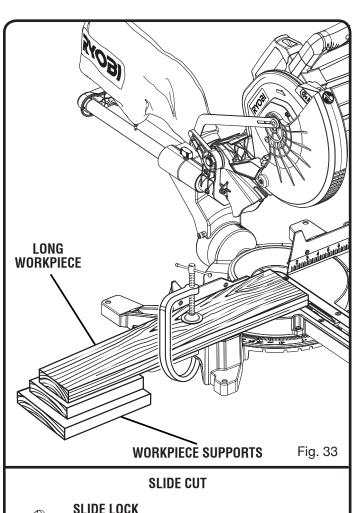
# TO SUPPORT LONG WORKPIECES

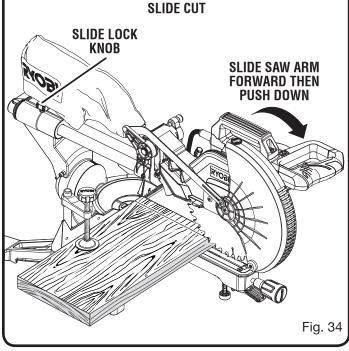
See Figure 33.

Long workpieces need extra supports. Supports, roller stand, or work surface level with the saw table should be placed along the workpiece so it does not sag. The support should let the workpiece lay flat on the base of the saw and work table during the cutting operation. Use the work clamp, C-clamp, or other suitable clamp to secure the workpiece when possible.



### WARNING:


Never make a cut by pulling the saw toward you as the blade can climb on top of the workpiece and come toward you. Failure to heed this warning could result in serious personal injury.


### TO SLIDE CUT

See Figures 34 - 35.

The sliding feature will cut workpieces 12 in. wide by 1-1/2 in. thick or 3-1/2 in. wide by 3-1/2 in. thick. With the saw off, pull the saw arm forward. Turn the saw on (let blade reach maximum speed), push the blade down cutting into the workpiece then back toward the rear of the saw to make a cut. Cuts are made by pushing the saw blade away from you and toward the bevel scale at the back of the saw stopping when the full rear position has been reached after each cut. When the saw is running (turned on), **NEVER** pull the saw blade toward you or toward the front of the saw.

- Raise saw arm to its full height.
- Place the workpiece flat on the miter table with one edge securely against the fence. If the board is warped, place the convex side against the fence. If the concave edge of a board is placed against the fence, the board could collapse on the blade at the end of the cut, jamming the blade. See Figures 40 41.
- When cutting long pieces of lumber or molding, support the opposite end of the stock with a roller stand or with a work surface level with the saw table. See Figure 33.





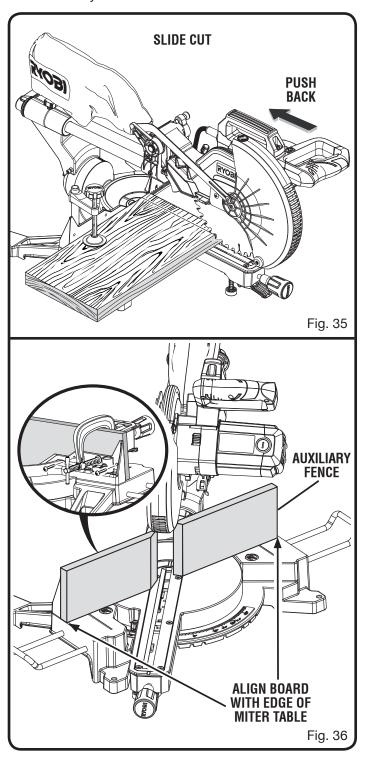
- Align the cutting line on the workpiece with the edge of saw blade or laser line.
- Loosen the slide lock knob by turning the knob counterclockwise.
- Grasp the stock firmly with one hand and secure it against the fence. Use the work clamp, C-clamp, or other suitable clamp to secure the workpiece when possible.
- Before turning on the saw, perform a dry run of the cutting operation to make sure that no problems will occur when the cut is made.
- With the saw off, grasp the saw handle firmly then pull the saw forward until the blade arbor (center of the saw blade) is over the front of the workpiece or until the saw is fully extended.
- Squeeze the switch trigger. Allow several seconds for the blade to reach maximum speed.
- Slowly lower the blade into and through the front edge of the workpiece.
- Push the saw handle away from you and toward the bevel scale at the back of the saw.
- Release the switch trigger and allow the saw blade to stop rotating before raising the blade out of workpiece and removing the workpiece from miter table.

**NOTE:** A cross cut is made by cutting across the grain of the workpiece. A straight cross cut is made with the miter table set at the  $0^{\circ}$  position. Miter cross cuts are made with the miter table set at some angle other than  $0^{\circ}$ .

### **MAKING AN AUXILIARY FENCE**

See Figure 36.

Depending on the size and position of the workpiece, certain unusual cuts may benefit from the additional support that can be provided by an auxiliary fence. The holes provided in the miter fence are used to secure an auxiliary fence in place.


**NOTE:** The auxiliary fence can only be used when the bevel is set at 0°. When making a bevel cut, the auxiliary fence **MUST** be removed.

#### To attach the auxiliary fence to the saw:

- Place the 10 in. long piece of wood against the miter fence and aligned with the left edge of the miter table.
  - **NOTE:** The appropriate height and thickness of the fence will vary based on the miter angle and the material being cut.
- Clamp the wood tightly against the fence and drive wood screws from the back of the fence through the two holes and into the auxiliary fence. If necessary, drill a pilot hole into wood first to prevent splitting. Remove clamp when finished.

**NOTE:** Make sure the screws you use to attach the auxiliary fence do not pass through the front face of the fence and the length of the screws will not put them in the path of the blade at any angle.

- Make full left miter cut through the auxiliary fence.
  - **NOTE:** Check for interference between the auxiliary fence and the lower blade guard. Correct any interference before proceeding.
- Repeat steps with second board by aligning with right side of miter table and making a full right miter cut through the auxiliary fence.



# **CUTTING COMPOUND MITERS**

To aid in making the correct settings, the compound angle setting chart below has been provided. Since compound cuts are the most difficult to accurately obtain, trial cuts should be made in scrap material, and much thought and planning made, prior to making the required cut.

| PITCH NUMBER OF SIDES |           |           |           |           |           |           |           |
|-----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| OF SIDE               | 4         | 5         | 6         | 7         | 8         | 9         | 10        |
| 0°                    | M- 45.00° | M- 36.00° | M- 30.00° | M- 25.71° | M- 22.50° | M- 20.00° | M- 18.00° |
|                       | B- 0.00°  |
| 5°                    | M- 44.89° | M- 35.90° | M- 29.91° | M- 25.63° | M- 22.42° | M- 19.93° | M- 17.94° |
|                       | B- 3.53°  | B- 2.94°  | B- 2.50°  | B- 2.17°  | B- 1.91°  | B- 1.71°  | B- 1.54°  |
| 10°                   | M- 44.56° | M- 35.58° | M- 29.62° | M- 25.37° | M- 22.19° | M- 19.72° | M- 17.74° |
|                       | B- 7.05°  | B- 5.86°  | B- 4.98°  | B- 4.32°  | B- 3.81°  | B- 3.40°  | B- 3.08°  |
| 15°                   | M- 44.01° | M- 35.06° | M- 29.15° | M- 24.95° | M- 21.81° | M- 19.37° | M- 17.42° |
|                       | B- 10.55° | B- 8.75°  | B- 7.44°  | B- 6.45°  | B- 5.68°  | B- 5.08°  | B- 4.59°  |
| 20°                   | M- 43.22° | M- 34.32° | M- 28.48° | M- 24.35° | M- 21.27° | M- 18.88° | M- 16.98° |
|                       | B- 14.00° | B- 11.60° | B- 9.85°  | B- 8.53°  | B- 7.52°  | B- 6.72°  | B- 6.07°  |
| 25°                   | M- 42.19° | M- 33.36° | M- 27.62° | M- 23.56° | M- 20.58° | M- 18.26° | M- 16.41° |
|                       | B- 17.39° | B- 14.38° | B- 12.20° | B- 10.57° | B- 9.31°  | B- 8.31°  | B- 7.50°  |
| 30°                   | M- 40.89° | M- 32.18° | M- 26.57° | M- 22.64° | M- 19.73° | M- 17.50° | M- 15.72° |
|                       | B- 20.70° | B- 17.09° | B- 14.48° | B- 12.53° | B- 11.03° | B- 9.85°  | B- 8.89°  |
| 35°                   | M- 39.32° | M- 30.76° | M- 25.31° | M- 21.53° | M- 18.74° | M- 16.60° | M- 14.90° |
|                       | B- 23.93° | B- 19.70° | B- 16.67° | B- 14.41° | B- 12.68° | B- 11.31° | B- 10.21° |
| 40°                   | M- 37.45° | M- 29.10° | M- 23.86° | M- 20.25° | M- 17.60° | M- 15.58° | M- 13.98° |
|                       | B- 27.03° | B- 22.20° | B- 18.75° | B- 16.19° | B- 14.24° | B- 12.70° | B- 11.46° |
| 45°                   | M- 35.26° | M- 27.19° | M- 22.21° | M- 18.80° | M- 16.32° | M- 14.43° | M- 12.94° |
|                       | B- 30.00° | B- 24.56° | B- 20.70° | B- 17.87° | B- 15.70° | B- 14.00° | B- 12.62° |
| 50°                   | M- 32.73° | M- 25.03° | M- 20.36° | M- 17.20° | M- 14.91° | M- 13.17° | M- 11.80° |
|                       | B- 32.80° | B- 26.76° | B- 22.52° | B- 19.41° | B- 17.05° | B- 15.19° | B- 13.69° |
| 55°                   | M- 29.84° | M- 22.62° | M- 18.32° | M- 15.44° | M- 13.36° | M- 11.79° | M- 10.56° |
|                       | B- 35.40° | B- 28.78° | B- 24.18° | B- 20.82° | B- 18.27° | B- 16.27° | B- 14.66° |
| 60°                   | M- 26.57° | M- 19.96° | M- 16.10° | M- 13.54° | M- 11.70° | M- 10.31° | M- 9.23°  |
|                       | B- 37.76° | B- 30.60° | B- 25.66° | B- 22.07° | B- 19.35° | B- 17.23° | B- 15.52° |
| 65°                   | M- 22.91° | M- 17.07° | M- 13.71° | M- 11.50° | M- 9.93°  | M- 8.74°  | M- 7.82°  |
|                       | B- 39.86° | B- 32.19° | B- 26.95° | B- 23.16° | B- 20.29° | B- 18.06° | B -16.26° |
| 70°                   | M- 18.88° | M- 13.95° | M- 11.17° | M- 9.35°  | M- 8.06°  | M- 7.10°  | M- 6.34°  |
|                       | B- 41.64° | B- 33.53° | B- 28.02° | B- 24.06° | B- 21.08° | B- 18.75° | B- 16.88° |
| 75°                   | M- 14.51° | M- 10.65° | M- 8.50°  | M- 7.10°  | M- 6.12°  | M- 5.38°  | M- 4.81°  |
|                       | B- 43.08° | B- 34.59° | B- 28.88° | B- 24.78° | B- 21.69° | B- 19.29° | B- 17.37° |
| 80°                   | M- 9.85°  | M- 7.19°  | M- 5.73°  | M- 4.78°  | M- 4.11°  | M- 3.62°  | M- 3.23°  |
|                       | B- 44.14° | B- 35.37° | B- 29.50° | B- 25.30° | B- 22.14° | B- 19.68° | B- 17.72° |
| 85°                   | M- 4.98°  | M- 3.62°  | M- 2.88°  | M- 2.40°  | M- 2.07°  | M- 1.82°  | M- 1.62°  |
|                       | B- 44.78° | B- 35.84° | B- 29.87° | B- 25.61° | B- 22.41° | B- 19.92° | B- 17.93° |
| 90°                   | M- 0.00°  |
|                       | B- 45.00° | B- 36.00° | B- 30.00° | B- 25.71° | B- 22.50° | B- 20.00° | B- 18.00° |

Each B (Bevel) and M (Miter) Setting is Given to the Closest 0.005°.

**COMPOUND-ANGLE SETTINGS FOR POPULAR STRUCTURES** 

#### **CUTTING CROWN MOLDING**

The compound miter saw does an excellent job of cutting crown molding. In general, compound miter saws do a better job of cutting crown molding than any other tool made.

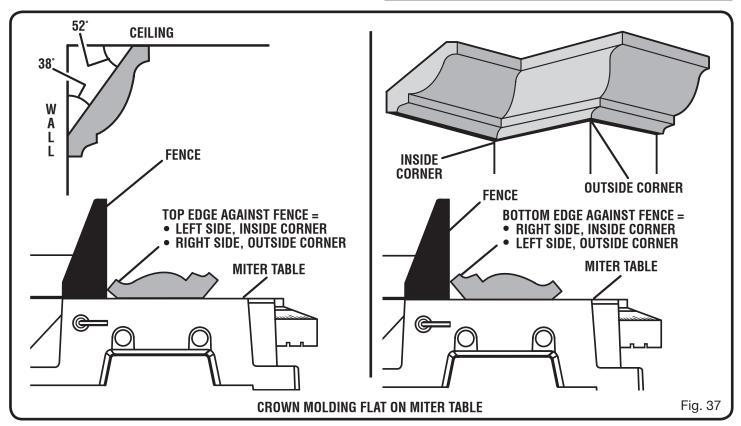
In order to fit properly, crown molding must be compound mitered with extreme accuracy.

The two contact surfaces on a piece of crown molding that fit flat against the ceiling and the wall of a room are at angles that, when added together, equal exactly  $90^{\circ}$ . Most crown molding has a top rear angle (the section that fits flat against the ceiling) of  $52^{\circ}$  and a bottom rear angle (the section that fits flat against the wall) of  $38^{\circ}$ .

# LAYING MOLDING FLAT ON THE MITER TABLE

See Figure 37.

To use this method for accurately cutting crown molding for a 90° inside or outside corner, lay the molding with its broad back surface flat on the miter table and against the fence.

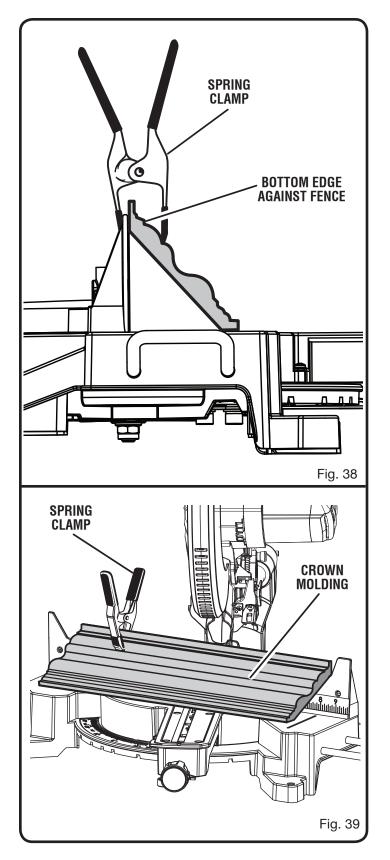

When setting the bevel and miter angles for compound miters, remember that the settings are interdependent; changing one angle changes the other angle as well.

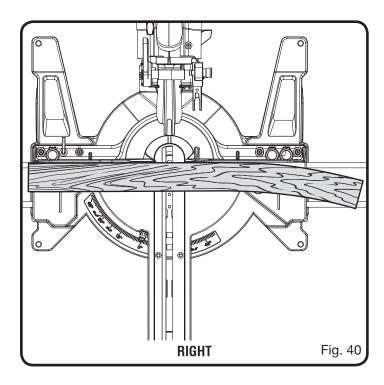
Keep in mind that the angles for crown molding are very precise and difficult to set. Since it is very easy for these angles to shift, all settings should first be tested on scrap molding. Also most walls do not have angles of exactly  $90^\circ$ ; therefore, you will need to fine tune your settings.

When cutting crown molding by this method, the bevel angle should be set at 33.85°. The miter angle should be set at 31.6° either right or left, depending on the desired cut for the application. See the chart below for correct angle settings and correct positioning of crown molding on miter table.

The settings in the chart below can be used for cutting All Standard (U.S.) crown molding with 52° and 38° angles. The crown molding is placed flat on the miter table using the compound features of your miter saw.

| Bevel<br>Angle<br>Setting | Type of Cut                                                                                                                  |  |  |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 33.85°                    | Left side, inside corner  1. Top edge of molding against fence  2. Miter table set right 31.62°  3. Save left end of cut     |  |  |  |  |
| 33.85°                    | Right side, inside corner  1. Bottom edge of molding against fence  2. Miter table set left 31.62°  3. Save left end of cut  |  |  |  |  |
| 33.85°                    | Left side, outside corner  1. Bottom edge of molding against fence  2. Miter table set left 31.62°  3. Save right end of cut |  |  |  |  |
| 33.85°                    | Right side, outside corner 1. Top edge of molding against fence 2. Miter table set right 31.62° 3. Save right end of cut     |  |  |  |  |





# NESTING CROWN MOLDING AGAINST THE MITER FENCE

See Figure 38 - 39.

**NOTE:** This method of cut is for crown molding between 4-5/8 in. and 5-1/4 in. tall. Do not attempt to cut molding that is larger than 5-1/4 in. tall.

- Set the bevel angle at 0° and the miter angle at 45° to either the left or the right. (For making 90° corners.)
- Nest and secure the crown molding against miter fence using a spring clamp and hold crown molding securely.
- Before turning on the saw, perform a dry run of the cutting operation to make sure that no problems will occur when the cut is made.
- Grasp the saw handle firmly. Squeeze the switch trigger. Allow several seconds for the blade to reach maximum speed.
- Slowly lower the blade into and through the crown molding.





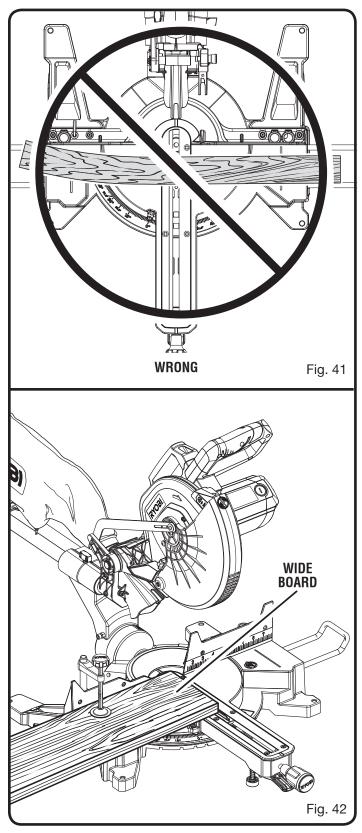
### **CUTTING WARPED MATERIAL**

See Figures 40 - 41.

When cutting warped material, always make sure it is positioned on the miter table with the convex side against the fence as shown in figure 40.

If the warped material is positioned the wrong way as shown in figure 41, it will pinch the blade near the completion of the cut.




## WARNING:

To avoid a kickback and to avoid serious personal injury, never position the concave edge of bowed or warped material against the fence.

## **CLAMPING WIDE WORKPIECES**

See Figure 42.

When cutting wide workpieces, such as a nominal 2 in. x 6 in., boards should be clamped with a work clamp as shown in figure 42.

